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Abstract

We give an overview of modern parallel algorithm design, with special attention to applications of
Massive Parallel Computation. We highlight broad ideas by outlining how well known problems
can be efficiently solved with MPC. In section 2, as a warm up, we present algorithms for sorting
and maximal matching from [Gha18] and [Gha19]. In section 3 we give intuition for and analyze
the Minimum Spanning Tree (MST) problem in Euclidean space from [And+14], and in section 4
we synthesize the progress in [IMS17] for the Weighted Interval Selection problem.

1 Introduction

1.1 Parallel Algorithm Design Today

Datasets are growing exponentially, with a rate far beyond that of the processing power or memory
of any single machine, making parallel computing a necessity. Meanwhile, with the bandwidth
of communication ever increasing and infrastructure maturing, parallel computing is now more
practical than ever. As such, there has been a surge in interest in parallel computing over the
past decade or so, and there is still much room for improved algorithm design to take advantage
of recent hardware innovation.

1.2 PRAM

The Parallel Random Access Machines model, or PRAM, is considered the most widely used model
for parallel computation today [Gha18]. In this model, p is the number of RAM processors used,
where each has access to shared memory, and computations are broken down into individual RAM
operations. This “fine-grained” view of parallelism assumes that operations occur at the same
speed, and communication problems are ignored as well, often leading to algorithms that are not
very practical for real-world scenarios. In order to mitigate this problem, a more “coarse-grained”
model, such as the Massively Parallel Computation model discussed in Section 1.4, can be helpful.

1.3 MPC

In the Massively Parallel Computation framework, we assume communication to be the bottleneck.
With the intention to leverage the power of a myriad of processors, it’s a far fetched supposition
that we could manage to give them all fast access to shared memory. Thus, in MPC we take each
machine to have its own CPU and memory.

We say that the system as a whole is composed of M machines each with S words of memory1.
We endeavor to handle massive inputs of size N , so we should not expect each machine to be able
to have Θ(N) memory, rather we imagine S to be more like

√
N or N .9 depending on the task

and resources. The input will hence be distributed across the machines, likely arbitrarily. Note
that to even give the system the input, we’ll need M ≥ N/S. For example, if we have S = N .9,
we would need more than N .1 machines, which could be on the order of hundreds of thousands if
we’re dealing with petabytes of input. MPC algorithms will typically assume that the system can
hold something like twice the input, or some other small constant.

We think of MPC algorithms progressing in rounds. Naturally, each round consists of what each
machine can do in parallel with all the others, which is to compute on its local slice of input, and
then send and receive up to S words. Clearly a machine cannot even desire to receive more then S

1Where a word is perhaps 32 or 64 bits, depending on machine architecture.
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words per round since such a message would exhaust its memory. On the other hand, although a
machine may like to send out multiple copies of its memory in a single round, all machines cannot
indulge in such a action in parallel because the system would not have the space to receive such
a message. Consequently, the time it takes a machine to send and receive S words is the natural
amount of parallel communication time to allocate to each round. Since this communication
time across appreciable distance generally takes much longer than the compute time, we don’t
even explicitly account for compute time per round in runtime analysis, and instead concern our
analysis entirely with the number of rounds needed. As such, the algorithms we design need only
describe what information each machine should send and receive in each round; i.e. the time to
compute this information is negligible.

1.4 BSP

The MPC and PRAM models are not the only frameworks used to formalize parallel algorithms.
The Bulk-Synchronous-Parallel (BSP) model, introduced by Valiant in the 80s [Val90], can be seen
as a wide model of which the MPC model is a special case. [IMS17], that we are going to cover
later, emphasizes the simplicity of the MPC model, that has less parameters than the BSP model.

One of the main differences between BSP and MPC is synchronization. In the MPC model, it is
taken for granted that processes can communicate in rounds and progress synchronously from one
round to the next one. In other words, the MPC model requires synchronous communication.

In practice, modern networks do not offer strict guarantees on the time that a message might take
to be delivered: communication might be asynchronous or partially synchronous. To account for
that, the BSP model introduces a mechanism called synchronization barrier, such that each process
reaching the barrier waits for the others. It allows us to divide the algorithm into a sequence of
supersteps, where communication and computation happen asynchronously inside each superstep.

2 Warm Up MPC Algorithms

2.1 Propagating a Message

One common subroutine is to get data of size d from one master machine to all other machines.
If d > S/(M − 1), this cannot be done in 1 round since the master machine cannot send more
than S words per round. The naive approach would be to have the master machine send d to
bS/dc machines each round, taking roughly Md/S rounds in total. We can do much better than
this with a broadcast tree. The master can send to bS/dc machines the first round. In the second
round, all of those bS/dc+ 1 machines can send to bS/dc machines each and so on. The number of
machines that have the data after R rounds is lower bounded by the number of nodes in a tree with
branching factor bS/dc. This tree is in turn lower bounded by its leaves, which are simply bS/dcR

after R rounds. Since we want all the machines to receive the data, it is enough that bS/dcR ≥M ,
or R ≥ logM

log(S/d) .

2.2 Sorting

2.2.1 Algorithm Description

We now consider quick sort for MPC as presented in [Gha18]. We seek to correctly sort n items
with high probability, such that each machine knows the rank of the items it started with. We
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take S = nε for ε > 0 and M · S = 2n, or M = 2n1−ε so that we have enough machines to hold
twice the input. We show how to achieve O( 1

ε2 ) rounds.

The goal is to break the problem down into smaller and smaller subproblems, each some factor
smaller than the last, until a subproblem fits into a single machine. Here a subproblem takes the
form of an unsorted list of all the elements between two known indices in the original list.

We start by having each machine tag its elements with probability nε/2

2n . The expected number

of the n total elements to be tagged is n · n
ε/2

2n = nε/2

2 , and so by Markov is likely less than nε/2.
Importantly, this is likely to fit on the first machine, which we’ll call the master. In fact, assuming
that we have enough machines to hold twice the input, the master should have 1

2n
ε free space, easily

accommodating the nε/2 tagged items. In 1 round we can send all tagged items to the master;
these will then be sorted by the master and act as pivots or boundary markers for subproblems.

Next, the master will send these sorted pivots to all other machines with the broadcasting technique
discussed in section 2.1. Applying the general formula we derived there, we can bound the required
rounds r for the broadcast

r ≤ logM

log(S/d)
=

log(2n1−ε)

log(nε/2)
= O

(1− ε
ε/2

)
= O

(1

ε

)
(1)

Since each machine now has the sorted pivots, each machine can determine between which two
pivots each of its input items belongs to. Next, each machine will send counts to the master such
that the master knows how many items fall between each consecutive pair of pivots. The master
will then assign sets of machines to the items between each two consecutive pivots to roughly
equally distribute the work. In another O( 1

ε ) rounds of broadcast communication, the master can
give each machine the total assignment scheme.

Finally, each machine will randomly distribute its input items across the machines that were
assigned to them. Because we have enough space to hold twice the input in the system, with good
probability no machine will be assigned beyond its capacity. If a machine is overburdened, we’ll
have to try again. Otherwise, to more systematically determine a distribution scheme, we’d need
more rounds of communication, which is precisely what we’re trying to avoid. Throughout the
redistribution of items, note that each item remains tagged with its initial machine.

As stated, we will repeat this process, recursively reducing the subproblems until the subproblems
are down to size nε and can be sorted on one machine. As a last step, these single machines can
then message back the original machines that held each item their orders.

2.2.2 Analysis

Let’s again consider this first step in the recursion. Ultimately we’d like to know by what factor
smaller are the subproblems than the original, where the subproblems are the items between each
two consecutive pivots. The smaller the subproblems become in each step, the quicker they will
be small enough to fit in a single machine.

Let’s consider the number of elements between some two consecutive pivots, which we’ll refer to
as width. The width can’t be too large, because by construction not a single one of these items
happened to be marked. Naturally we might expect the width to be something like the reciprocal
of the probability of items being marked, or in this case 2n1−ε/2, which is already suggestive that
our subproblems are smaller by something like a nε/2 factor. However, since we may recurse many
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times, we’d like an extremely high probability guarantee. To be more precise, since none of these
items within the width were marked, we have

Pr(width ≥ x) ≤ (1− Pr(marked))x =
(

1− nε/2

2n

)x
≤ exp

(−xnε/2
2n

)
(2)

where if x = cn1−ε/2 lnn, we’d have Pr(width ≥ x) ≤ n2/c. Thus, if c = 30, this probability
becomes exceedingly small, and we can say with very high probability that the width, or number
of items between two consecutive pivots, is less than cn1−ε/2 lnn. This, in turn, is much less than
n1−ε/3 for the range of n we care about.

Consequently, in the first level of recursion, the size of our subproblems are likely no more than
n1−ε/3, and in the lth level they are likely no more than n1−lε/3. After l = O( 1

ε ) levels of recursion,
we can make the subproblems as small as we’d like.

In the final runtime analysis, recall that since we also need O ( 1
ε ) rounds per level of recursion,

our total runtime would be O ( 1
ε2 ). Recalling that we assumed each machine to have nε space,

we see that as we attempt to shrink ε and spread the input across more and more machines, our
runtime pays a 1/ε factor twice. Once because of the time it takes the master machine to spread
the message about the pivots, and another because we need that many more recursive reductions
to fit the subproblems into individual machines.

2.3 Maximal Matching

We present an algorithm for maximal matching as described in [Gha19]. Suppose we have a graph
G = (V,E) with n vertices and m edges. Further, suppose the graph has far more edges than
vertices, such that each machine in the MPC model can hold all the vertices but not all the edges.
A matching is a set of edges such that no two edges are incident on the same vertex, and a maximal
matching is a matching such that no addition edge can be added to the set. Note that a maximal
matching is not a globally optimal matching, although it can be shown that the two differ at most
by a factor of 2. The analysis and techniques that have been proposed for this problem are sensitive
to the size of s, or the memory of each machine. Here we’ll take the superlinear memory regime
and assume that s = n1+ε for ε ∈ (0, 1] and show how to achieve O logm

ε logn−log 2 rounds.

To start edges are randomly distributed across machines and we desire that in the end each machine
know which of its initial edges belong in the maximal matching set. In each round we add edges
to our matching set M , starting with the empty set by doing what follows:

1. Mark each of the remaining m edges with probability p = n1+ε

2m , and move marked edges to
a master machine.

2. Have the master machine compute the maximal matching for the marked edges. Add that
matching to M .

3. Communicate to all other machines the edges added to M so that all machines can drop
matched vertices and other edges incident on those vertices.

The algorithm will terminate when machines have no edges left to mark. At this point there will
be no more available matches to make and we’ll have a maximal matching. The correctness lies in
the fact that edges only disappear as options when they are no longer viable because either they
have been used or vertices they connect to have been matched. To show that with high probability
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we will be done in rounds roughly proportional to 1/ε, we show that with high probability the
number of remaining edges drops by a factor of nε/2 each round.

Lemma 6.17 from [Gha19] After each iteration starting with m edges, with probability 1 −
exp(−Θ(n)), the number of the remaining edges is at most 2m

nε .

Proof. The key is to realize that any large subset S of the vertices in G is so likely to have an
edge marked that it’s likely that all large vertex subsets will have an edge marked. Therefore,
after some rounds our remaining vertex subset probably won’t be large because we know that our
remaining subset does not have an edge in it that was marked; if it did at least one of the vertices
the edge connects would have been removed. More precisely, call a heavy vertex set one with at
least 2m

nε edges. The probability that no edge was marked in a round is

(1− pr(marked))
2m
nε = (1− n1+ε

2m
)

2m
nε ≤ e−n (3)

Since there are no more than 2n possible choices for a heavy S, with probability at most e−n · 2n,
at least 1 heavy subset of vertices will have had no marked edges. But this directly implies that
with probability 1− e−n · 2n ≥ 1− exp(−Θ(n)) no heavy subset would have had no marked edges,
or all heavy subsets will have marked edges. Therefore with this probability our remaining subset
of vertices is not a heavy subset, again, because if it did have a marked edge, we could have further
removed those additional two vertices the edge is incident on. Because the subset of vertices
remaining at the end of a round is not heavy, it has at most 2m

nε edges. With this, we’ve shown

that in each round the remaining edges are reduced by at least of a factor of nε

2 .

Since we reduce the edges by a factor of at least nε

2 each round, we need the following to get down
to 0 available edges

m ·
( 2

nε

)r
< 1 (4)

r log
2

nε
< log

1

m
(5)

r log
nε

2
> logm (6)

r =
logm

ε log n− log 2
sufficient r (7)

where r is the rounds required.

Remarks

Note that we see this sort of probabilistic reasoning applied quite frequently in the MPC paradigm.
Since machine communication is the bottleneck, it will often be advantageous to spread out work
among machines by having machines take on random chunks of work, hoping that the job somewhat
uniformly distributes.

One key to all of this working is that we do suppose machines to have large enough memory to
carry the entire vertex set, just not the edge set. This is somewhat reasonable as edge sets can be
exponentially larger than vertex sets. In this way machines were able to keep some global grip on
the problem in a way that won’t be the case when we study MST.
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3 MPC for Geometric Graph Algorithms

This section will focus on presenting and analyzing the ideas put forward in [And+14]. In section 3.1
we begin by discussing the “solve and sketch” framework, which is a general scheme for MPC that
is not limited to Minimum Spanning Tree (MST). Then in section 3.2 we address the application
to a (logs n)O(1) round approximate MST algorithm.

3.1 Solve and Sketch framework

The idea behind the solve and sketch framework is to treat the algorithm that solves local problems
as a black-box and instead focus on how the larger problem will be partitioned and local solutions
combined. As such, solve and sketch becomes potentially useful for many geometric graph problems
other than just MST. Solving particular problems like MST or Earth Mover Distance (EMD) then
becomes a matter of designing Au, which is the algorithm applied to partitioned local to single
machines.

The partition of the space is hierarchical with a tree like structure. Each partition of space is
split into about

√
s children, making the total tree depth O(logs n). Computation to solve local

problems and then combine proceeds bottom-up from the leaves, which contain single points. A
sketch of local solutions are sent up to parents. Since parents must take in about

√
s local solutions

from children, those solutions must be of size at most
√
s to all fit in one machine with memory s.

Therefore sketches of solutions must be drastically smaller than the solutions themselves to make
slices of computation feasible for single machines as we move up the tree during runtime.

3.1.1 Partition

Without loss of generality, as can be shown, we can assume that all points have integer coordinates
in [0,∆], where ∆ = nO(1). We denote the partition as P and the levels as P0, P1...PL. To create
Pl−1 we split Pl into c equal size cubes. Because points have integer coordinates in [0,∆], and the
whole space in d dimensions has volume ∆d, we can only recurse into c splits logc ∆d = d logc ∆ =
O(d logc n) times. Each child cell of C is labeled with an integer in [c] so that during implementation
we can keep order of the cells and make reasonable assignments to machines. Ultimately we want
to assign cells to machines such that the children of those cells also tend to get assigned to the
same machines, to the extent possible.

3.1.2 Unit Step

Formally, we call the algorithm computes on input in individual cells through all partitions Pl Au.
At the lowest level of recursion, Au takes the actual points as input. At other levels Au takes as
input the output from the c children of the cell it’s applied to. We limit the output, runtime and
total space of Au to pu(nu), tu(nu) and su(nu) respectively.

3.1.3 Solve and Sketch Algorithm

At the heart of the solve and sketch algorithm presented above is how to decide which cells will be
assigned to which machines. In each round, we consider all of the cells that are either at the base
level of recursion or the unit step has not been applied to their parents. These are the cells that
are ready for local computation where the black-box Au is then applied. Recall that cells are all
numbered from the partition, and furthermore this numbering is good in the sense that if C2 > C1,
then the children of C2 are numbered higher than the children of C1. This allows the solve and
sketch algorithm to sort the cells and make assignments to machines such that machines tend to
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Algorithm 1: Implementation of algorithms in the Solve-And-Sketch framework
[And+14]

input : A set S, labeled by a hierarchical partition P = (P0, . . . , PL) of degree c such
that P0 is a partition into singletons.

1 for r = 1, . . . R do
2 Let Cr be the be the set of non-empty cells C of P such that

(1) C ∈ P0 or the unit step Au has already been applied to C, and
(2) the unit step has not been applied to the parent of C.

3 Sort Cr according to the induced order. Let the sorted order be C1, . . . , Cnr .
4 Let pu(Ci) be the output size of cell Ci. Compute hi =

∑
j≤i pu(Cj) for all i ≤ nr

using a prefix sum algorithm.
5 Consider some cell i, and let j = dhi

s e. Machine j receives the output of the unit step
that has been applied in round r − 1 to Ci.

6 foreach machine j do
7 for ` = 1, . . . , L do
8 while there exists a cell C ∈ P` such that C ⊆

⋃
i:(j−1)s≤hi<js

Ci do

9 Apply the unit step Au to C, where the inputs are:
for ` > 1: the outputs of the unit step for children of C
for ` = 1: the cells that are children of C

10 (If the output of Au is larger than its input size, the algorithm instead just
outputs the input; appropriately marked to be “lazy evaluated”.)

get assigned cells with their descendants. Each machine, then computes Au on its lowest level cells
yet to be computed, and then the parents of those cells up until the machine has no cells left to
which Au need be applied. Rounds progress until all the computation is done. Since the entire
input fits into the memory of all the machines, we should expect to compute Au on P0 in the first
round. Then, since Au returns sublinear output, we should expect to be able to move up at least
1 level of recursion in each round.

The correctness of the Solve-and-Sketch algorithm can be formally stated as follows:

Theorem 3.1 (Solve-And-Sketch [And+14]). Fix space parameter s = (log n)Ω(d) of the MPC
model. Suppose there is a unit step algorithm using local time tu(nu), space su(nu), and output
size pu(nu) on input of size nu. Assume the functions tu, su, pu are non-decreasing, and also
satisfy: su(pu(s)) ≤ s1/3 and pu(s) ≤ s1/3. Then we can set c = sΘ(1) and L = O(logs n) in the
partitioning from above, and we can implement the resulting Solve-And-Sketch algorithm in the
MPC model in (logs n)O(1) rounds. Local runtime is s · tu(s) · (log n)O(1) (per machine per round).

3.2 Minimum Spanning Tree

In this section we present the intuition behind the following result:

Theorem 3.2 (Approximate MST [And+14]). Let ε > 0, and s ≥ (ε−1 logs n)O(1). Then there
exists an MPC algorithm that, on input a set S in Rd runs in (logs n)O(1) rounds and outputs a
spanning tree of cost (under the Euclidean distance metric `d2 for d = O(1)) at most 1 + ε factor
larger than the optimal. Moreover, the running time per machine is near linear in the input size
nu, namely O(nuε

−d logO(1) nu).
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3.2.1 Main Idea

It’s instructive to first consider a naive and greedy approach to the problem, ignoring for a moment
that greedy algorithms don’t actually work for MST. For this, we could split the space up into c
child spaces, and then recursively split each child space until the smallest blocks of space contain
only 1 point, at which level the MST is trivial. We could then seek to solve MST on the smallest
unsolved sub-problems. As we move up the levels of recursion our job becomes to connect the MST
forest produced in the lower levels.

We can get a sense that this idea would adapt well to the MPC model. Starting from the lowest
level of recursive space splitting, each machine can get a patch of space with few enough points
that can fit in memory. After the MST forest is computed, one tree per machine, we can then
sketch those trees to be sent up to the next higher level of recursion. The sketch will be some way
of representing key information and points in each tree with a memory footprint much smaller than
the whole tree. The idea that we don’t need to see an MST forest at full resolution to connect it
approximately well is fairly intuitive and central to the whole scheme.

As sketches are themselves recursively sketched, at the highest level of recursion a single machine
can connect the forest. The key is that since the output to a MST calculation for a block of space
is sketched, a single machine can then take on the order of s of these outputs into memory for
the next level of computation. This allows us to do the recursive space splitting with a branching
factor of s. By changing the resolution of the computation by a constant factor during each round,
we could get O(logs n) rounds.

The problem with all of this is that local solutions to MST are not necessarily globally optimal.
For example, at some level of the recursive space splitting, if a space has just two points near
opposite boundaries, these points would have to be connected to each other at a cost roughly
the distance of the block. Alternatively, there may be other points much closer to each on the
other sides of the boundaries which would likely make for a cheaper spanning tree. This is part
of the reason why Kruskal’s MST algorithm works by taking the shortest edge that can connect
two forests globally. The solution is to only use edges that are within ε times the width of the
sub-blocks at any level of recursion. Thus, rather than providing fully connected MSTs for the
sub-blocks, the local solutions themselves are really only responsible for providing a forest, wherein
each tree consists of points all within ε of the rest of the tree. A sketch, or blurred picture, of this
forest can then be sent up to the next level of the recursion, along with connectivity information,
for the forest to then be roughly connected up. The algorithm we will describe from [And+14] will
take many cues from Kruskal’s MST algorithm, and the approximation guarantee may be proved
by comparing the resulting tree to what Kruskal’s would have produced on a slightly modified
graph.

3.2.2 Hierarchical Partitioning

Topology. We note ρ(u, v), the distance between two points u, v. For a set of points S′ ⊆ S, the
diameter ∆(S′) is the maximum distance between two points of S′.

Deterministic hierarchical partition. First, we give more details about how to describe a
hierarchical partition of points into cells, without any randomness so far. In Section 3.1.1 we gave
a general intuition of the Euclidean partition where each level is simply created by splitting each
cell of the previous level into c equally sized cubes, where the points have integer coordinates.

Let us now consider the slightly more general case where the points are contained in S ⊆ [0,∆(S)]d,
without necessarily having integer coordinates. For a given deterministic hierarchical partition P
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with L levels P0, . . . , PL (where PL = {S} and P0 = {{p1}, . . . , {p|S|}}), the diameter of a level P`
is defined by ∆(P`) = maxC∈P`

∆(C).

We define ∆` := c(`−L)/d∆(S), that verifies ∆(P`) ≤ ∆`. We can check that ∆L = ∆(S) and
∆0 = 1

cL/d ∆(S). To summarize, for the Euclidean grid partition we have:

∀` ∈ {0, . . . , L},∀C ∈ P`,∀(u, v) ∈ C,
ρ(u, v) ≤ ∆(C) ≤ ∆(P`) ≤ ∆`

(8)

Randomized hierarchical partition. We saw that there is an obvious problem when we use
a naive grid to split the MST problem into local cells: two points in adjacent cells will not get
connected even if they are very close to each other but on opposite sides of the border.

The solution is to randomize the grid. We keep the same deterministic construction presented
earlier, but we add a randomized offset to the grid. In practice, we take a slightly bigger grid of
diameter 2∆, and we place its bottom corner randomly in [−∆, 0]d. If we shake the grid before
throwing it onto the set of points, we must be quite unlucky to have a cell border that goes right
between two close points.

More formally, we now consider the uniform distribution of hierarchical partitions instead of sticking
to a single deterministic grid. Following this distribution, the probability of cutting an edge is
bounded by:

∀x, y ∈ S,Pr[C`(x) 6= C`(y)] = O

(
d · ρ(x, y)

∆`

)
(9)

Distance-preserving hierarchical partition. In the general setting, we do not have to nec-
essarily define the partition as a grid, especially if we are not working in Euclidean spaces. It is
sufficient to have a distribution that essentially verifies Equation 8 and 9, with potentially different
constants.

3.2.3 Unit Step Algorithm

Thanks to the above partition and Theorem 3.1, it is sufficient to give an algorithm for a unit step
(that verifies the complexity requirements) to obtain a global MPC algorithm that computes an
approximate MST. The unit step algorithm is presented in Algorithm 2.

Intuition. This unit step algorithm is close to Kruskal’s algorithm, as presented in Section 3.2.1:
at each level the unit step algorithm browses the connected components in order and connects the
two closest ones. However, we stop this process as soon as edges are longer than ε∆`, in order to
avoid accepting long edges that might be locally optimal but globally wrong.

Each unit step for a cell C at level ` is actually producing two kinds of outputs:

• A set of new edges selected during the step at level `. These edges are part of the original
graph, and they connect sub-trees already produced by the children of C. At the last level
L, for PL = {S}, the output of the unit step will be the approximate MST. This means that
as soon as a unit step is accepting an edge, this edge will be present in the global solution.

• A sketch that we will be combined with the sketches output by C’s siblings to serve as input
for C’s parent. We describe the sketch below.

10
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Algorithm 2: Unit Step at Level ` [And+14]

input : Cell C ∈ P`; a collection V (C) of points in C, and a partition Q = {Q1, . . . Qk} of
V (C) into previously computed connected components.

1 repeat
2 Let τ = min i,j

i 6=j
minu∈Qi,v∈Qj ρ(u, v).

3 Find u ∈ Qi and v ∈ Qj for some i, j : i 6= j such that ρ(u, v) ≤ (1 + ε)τ .
4 Let θ = ρ(u, v).
5 if θ ≤ ε∆` then
6 Output tree edge (u, v).
7 Merge Qi and Qj and update Q.

8 until θ > ε∆`;
output: V ′ ⊆ V , an ε2∆`-covering for C, the partition Q(V ′) induced by Q on V ′.

Sketch. We explained in Section 3.2.1 that the sketch’s role is to blur the input for the next level,
in order to keep a low space complexity. However, we want each unit step to output real edges of
the graph in order to obtain an MST at level L, so we cannot choose arbitrary points (such as the
mean of some points).

Hence, the sketch V ′ output by the unit step algorithm is a subset of its input points V . We will
choose V ′ to be an ε2∆` covering for C, which means that ∀x ∈ C, ∃y ∈ V ′ : ρ(x, y) ≤ ε2∆`. This
sketching is not too aggressive: we simply cover the input points with balls of radius ε2∆`, and
only forward the centers of these balls to the next level.

We are not loosing any information because most of the points covered by a given ball have already
been connected when we parsed the edges up to ε∆` > ε2∆`, except for edges that were crossing
a cell boundary (but this happens with low probability).

At each level, we zoom out the sketching size from ε2∆` to ε2∆`+1, i.e. we scale the balls by a
factor c1/d in radius, which is a factor c in volume: it corresponds to the branching factor.

Also, to speed up the process we keep track of the connected components that have been built so
far and include them along the points of the sketch.

Approximate nearest-neighbor optimization. The unit step algorithm adds an optimization
to improve the running time compared to Kruskal’s algorithm: instead of connecting the two closest
pair of connected components, we connect the approximately closest pair with an approximation
factor (1 + ε). Indeed, we only want an approximate result and approximate nearest neighbor
search provides better complexity.

4 MPC for Dynamic Programming Algorithms

4.1 Key Properties

There are two key properties that a problem should exhibit in order to be able to leverage efficient
distributed algorithms. These properties are monotonicity and decomposability, as described in
[IMS17]. Monotonicity alone can lead to algorithms running in O(log n) rounds for some problems,
while decomposability may enable a further reduction to just O(1) rounds.

11
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Definition 4.1 (Monotonicity, Decomposability).

The following definitions are interpreted from [IMS17].

1. Monotonicity. If a maximization problem is broken up into several sub-problems, then the
solution to any of the sub-problems cannot be greater than that of the original problem (and
vice-versa for a minimization problem).

The intuition here is that there must be a trade-off in being able to divide the original problem
into smaller units – valid sub-problems (which are smaller and therefore easier to solve than
the original problem) should not also be able to attain better optimal solutions. Accordingly,
sub-problem solutions will lead to valid components of the larger solution.

2. Decomposability. If the input can be split into a two-part hierarchy, where the top tier
elements are called groups, and each group is comprised of a distinct set of bottom-tier partial
inputs called blocks, then:

• consolidating sub-solutions from individual groups can lead to a nearly optimal solution

• each group can achieve a nearly optimal sub-solution using only O(1) of its blocks

The (loose) intuition here is that “a chain is only as strong as its weakest link”, or in other
words: a problem that can be broken down into (parallel) units can only be as difficult as its
most difficult unit. If each group computes a nearly optimal sub-solution in O(1) rounds as it
only requires the use of inputs from O(1) of its blocks, then achieving the overall (approximate)
solution simply requires a final consolidation.

In the rest of this section, we focus on the Weighted Interval Selection problem, exemplifying how
the properties defined above can enable the use of efficient distributed algorithms.

4.2 Weighted Interval Selection

Definition 4.2 (Weighted Interval Selection (WIS) problem). Consider an interval I = (a, b)
on the real number line. Given a collection of n such intervals {Ii = (ai, bi)} and corresponding
(strictly) positive weights {wi}, the goal is to choose a subset of non-overlapping intervals that
maximizes the sum of the weights in that subset.

Figure 1: Example of a collection of weighted intervals.

When all of the data can fit onto a single machine, the above problem can be solved in polynomial
time. The following outlines a simple dynamic programming approach to find an exact solution.

Given a selection of weighted intervals S, let OPT(S) denote the greatest possible weight sum of
non-overlapping intervals that can be achieved using some optimal subset in S.

12
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Assuming that the intervals Ii are sorted by their start-points ai, defineA(i) = OPT({Ii, Ii+1, ..., In}).
Accordingly, the optimal solution to WIS is equivalent to w∗ = A(1). Note that A(i) can be broken
down using the following recursive formula:

A(i) = max{A(i+ 1), wi +A(j)} (10)

where j = min
ak>bi
{k} and A(n+1) = 0

In other words, the optimal weight sum (starting at interval Ii) is simply the better of two choices:
(a) excluding interval Ii and just using the optimal weight sum starting at Ii+1, or (b) including
interval Ii, and using the optimal weight sum over the set of intervals starting at Ij (where j is the
index of the left-most non-overlapping interval with Ii).

This leads us to a simple algorithm:

Algorithm 3: Single-Machine Weighted Interval Selection

input : Set of n intervals {Ii = (ai, bi)}
1 sort: {Ii = (ai, bi)} (in order of increasing ai)
2 set: A(n+1) = 0, an+1 =∞
3 for i = n, n−1, ..., 1 do
4 compute: j = min

ak>bi
{k} (using binary search)

5 set: A(i) = max{A(i+1), wi +A(j)}
output: w∗ = A(1)

The initial sorting is achieved in O(n log n). There are O(n) for-loop iterations, each requiring
O(log n) to compute j, for a total run-time of O(n log n).

4.2.1 MPC Weighted Interval Selection

When the number of intervals n is very large (where they no longer fit onto a single machine), a
different approach must be taken. For some fixed constant 0 < δ < 1, if individual machines only
have memory s = Õ(nδ), the data has to be distributed over m machines, and MPC is employed.
If n is much larger than a single machine’s memory, then δ is small; hence, m = n/s ≈ O(n).

Leveraging the key properties defined in section 4.1 above, the following theorems outline efficient
distributed algorithms to the WIS problem. Again, due to the memory constraints, sketching is
used (similar to Sec. 3.2.3), thereby returning only an approximate solution, albeit, guaranteed to
be within a factor of 1−ε of the optimum, for some fixed constant ε > 0.

In order to simplify the proofs (and without loss of generality), we assume that the given intervals
are sorted and modified using the following procedure, which can be achieved in O(1) rounds:

1. Sort intervals Ii in order of increasing start-points ai. Note that this can be achieved in O(1)
rounds, by appropriately adapting the sample-sort algorithm as stated in [IMS17].

2. Ensure that no start-points and/or end-points have the same value by infinitesimally per-
turbing any set of points that share the same value.

3. Rescale the interval weights such that the smallest weight is ε/n and the largest is 1. This is
a simple linear transformation and can be easily inverted to correct the returned solution.
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4. Maintaining their ordering, “move” the first s = n/m interval start-points into the range
(1, 2), ensuring that any end-points caught in the mix are “dragged along” to maintain their
ordering. Move for the next s start-points into (2, 3), then the next s into (3, 4), etc. Note
that these modifications do not effect the optimum or any intermediate computations thereof
since the relative ordering of the intervals is carefully kept consistent. Let M1 be the collection
of all intervals with start-points in the range (1, 2), M2 those with start-points in (2, 3), etc.
Accordingly, each individual machine q is assigned the s intervals in Mq respectively.

4.2.2 Leveraging Monotonicity for O(log n)-round WIS

Theorem 4.3 (WIS in O(log n) rounds [IMS17]). There exists a (1−ε)-approximate algorithm
for the Weighted Interval Selection problem running in O(log n) rounds, when each machine has
memory Õ(nδ), for any 0 < ε, δ.

Proof.

Let B(i, j) = OPT({Ik = (ak, bk) | ai ≤ ak < bk < aj}), the optimal weight sum of the subset of
intervals that start at or after ai and that end before aj . Note that for any i ≤ i′, j′ ≤ j, then
OPT(i′, j′) ≤ OPT(i, j). This is clear since the new smaller collection corresponding to B(i′, j′)
has fewer intervals to choose from; hence, cannot have a better optimal solution. Accordingly, the
sub-problem defined by B exhibits monotonicity.

However, dealing with pairs of indices (i, j) requires O(s2) storage, which is unavailable. Instead,
for reasons that will become apparent shortly, given a weight sum w, define C(i, w) as a sort of
dual of B(i, j):

C(i, w) = min
B(i,j)≥w

{j} (or ∞ if no such j exists, ie. C(i, w) is infeasible) (11)

Similar to the recursion in Eq. 10, C(i, w) can be computed using the recursion:

C(i, w) = min
u,v≥0
u+v=w

{C(j, v) | j = C(i, u)} (12)

which can be interpreted as finding a valid break (ie. one that keeps the same total weight sum)
in the set of intervals corresponding to C(i, w), where the original interval [i, k) is broken into two
intervals [i, j) and [j, k), (one of which may be empty).

Note also, that using this representation, the optimal solution to WIS is equivalent to:

w∗ = max
C(1,w)<∞

{w} (13)

Since the problem consists of n interval weights with each one’s value between ε/n and 1, weight
sums are in the range [ε/n, n], but there may be up to 2n − 1 unique values; much more than can
be stored onto any single machine – and far worse than the O(s2) that we tried to avoid! This
is where sketching comes into play. Instead of considering all possibilities, the weight sums are
sketched down to the set W , parameterized by a cleverly chosen constant η = ε/ logm:

W = {0, ε/n, (1+η)ε/n, (1+η)2ε/n, ..., n} (14)

|W | ≈ log(n2/ε)

log(1 + η)
≈ logm

ε
log
(n2

ε

)
= O

(1

ε
log2 n

)
= Õ(1) (15)
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Further, due to monotonicity, if C(i, w) returns a feasible solution, then C(i, w′) also returns a
feasible solution for any w′ ≤ w, and if w′ ≈ w, we lose only a small weight, at most w −w′. As a
result, we are able to approximate weights by slight under-estimation without losing feasibility or
incurring too high of an approximation error. This subtle but crucial property of monotonicity is
what allows us to leverage sketching for this problem.

Armed with the sketched set of weight sums and making use of dynamic programming, each
machine q is able to store its own table of estimates C ′q(i, w) for i ∈Mq, requiring s · |W | = Õ(nδ)
storage space per machine; which is now within the MPC memory constraints.

We can now outline the algorithm:

Algorithm 4: MPC Weighted Interval Selection

input : Set of n intervals {Ii = (ai, bi)}
1 modify inputs (as outlined in the procedure in 4.2.1)

// initialize locally feasible C′(i, w)

2 parfor q ∈ [m] do
3 for i ∈Mq and w ∈W do
4 init: C ′q(i, w) (ie. the correct value of C(i, w), or ∞ if locally infeasible)

// update C′(i, w) for progressively larger w with each round

5 for round r = 1, ..., logm do
6 parfor q ∈ [m] do
7 for i ∈Mq and w ∈W do
8 reset: Sqi = {}
9 for u, v ∈W, w/(1+η) ≤ u+ v ≤ w do

10 get: j = C ′q(i, u) (from local machine q)

11 if j <∞ then
12 request: k = C ′p(j, v) (from machine p = dj/se)
13 update: Sqi ← Sqi ∪ {k}

14 update: C ′q(i, w)← min{Sqi}

output: w′ = max
w∈W

C′
1(1,w)<∞

{w}

Upon initialization, each machine sets the correct value for C ′(i, w) for weight sums w ∈ W that
are locally feasible. With each round, this information is “doubled” across machines, until finally,
after logm rounds, all m machines have access to all the information; especially C ′1(1, w).

In every iteration of the outer update loop, each machine requests non-local values of C ′(j, v) for
each of its s intervals and |W | weight sums, for a total of Õ(nδ) requests. This fits is within the
allotted MPC bandwidth limit; hence, can be achieved in O(1) rounds.

Due to the “sketchiness” of the weight sums, if w∗ is the true optimum and w′ is the solution
returned by the algorithm, then: w∗/(1 +η) ≤ w′ ≤ w∗. Furthermore, a (1 +η)-approximate
equality (ie. u+ v ≈ w) has to be permitted in order to facilitate breaking down C ′(i, w) into sub-
problems C ′(i, u) and C ′(j, v). Consequently, this approximation deteriorates intermediate weight
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sums by a factor of at most 1+η with each round. Hence, after logm rounds:

w∗ ≥ w′ ≥ w∗

(1+η)logm
=

w∗

(1+ε/ logm)logm
≈ w∗

1+ε
> (1−ε)w∗ (16)

By construction, the given algorithm terminates in logm = O(log n) rounds, and uses s = Õ(nδ)
storage space and communication bandwidth, and the resulting solution is within a 1− ε factor of
the optimum, thereby completing the proof.

4.2.3 Leveraging Decomposability for O(1)-round WIS

Note that in the theorem and proof above, only monotonicity is invoked, and the claim is that WIS
can be approximately solved in O(log n) rounds. As it turns out, the WIS problem also exhibits
decomposability, facilitating an approximate solution in O(1) rounds.

In splitting input intervals over the m machines, each machine can be seen as a separate block q.
An interval Ii that starts at block q = baic, may either be local (ie. ending in the same block), or
it may be crossing (ie. ending in a later block bbic > q). Consider the set of optimally-selected
crossing intervals (ie. those that comprise of the optimal solution). For some fixed constant L, it is
possible to pool all the blocks into groups such that each group has L = O(1) (optimally-selected)
crossing intervals (the last group is allowed to have less). Accordingly, each group’s optimal solution
can be computed in O(1) rounds.

Of course, the issue is how to a-priori determine this grouping of blocks without already knowing
the solution. The following theorem and associated procedure ([IMS17]) outlines a method to
intelligently initialize a set of groups and then tweak it in O(1) rounds so as to achieve a nearly
optimal group assignment (and thereby output an approximately-optimal final solution).

Theorem 4.4 (WIS inO(1) rounds [IMS17]). There exists a (1−ε)-approximation for the Weighted
Interval Selection problem running in O

(
1
δ

(
log 1

ε + log 1
δ

))
rounds, when each machine has memory

Õ(nδ), for any 0 < ε, δ.

While this is an interesting result, the proof of this theorem is involved and does not add much to
the intuition behind the concepts defined in the paper. We direct the reader to [IMS17] for details.
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