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1 Exploratory Data Analysis
1.1 Visual Inspection

bacterial covid normal viral

Figure 1: First look at covid-19 x-ray dataset
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We begin by using the Keras data generator to reshape the images into 512× 512 squares. In addition,
we apply preprocessing to gives the images small random perturbations in rotation, brightness, shear,
width shift, height shift and zoom level. Let’s have a look at some random samples of each class, as
shown in figure 1. The covid images tend to have a larger black area than the others. In addition, the
covid images also tend to have rib cages that are over exposed. The normal images are probably the
easiest to distinguish by eye from the others; they don’t have the large dark areas seen in the others,
which aligns with what we might expect. Perhaps these dark areas we see are caused by fluid build up
in the lungs, which may be a symptom of many diseases. By contrast, covid, bacterial and viral
seem fairly difficult to distinguish from one another.

1.2 Data Quantity
1.2.1 Challenges

In total we have 1139 training images. About 7% of them are covid and the rest are evenly distributed
across the other classes. Considering the images each contain hundreds of thousands of pixels, we are
saddled with far more features than observations. The curse of dimensionality is one of the central
challenges of this dataset that we will try to overcome.

1.2.2 Solutions

One simple step in overcoming the curse of dimensionality is to resize the files, blurring neighboring
pixels together. We can see the affect of different sizes on image clarity in figure 2 below.

32 by 32 64 by 64 128 by 128 256 by 256 512 by 512

Figure 2: The effect of resolution on image quality

Ultimately, we’d like to choose a resolution that is as low as possible which still preserves the
distinguishing features of the 4 classes. 32× 32 seems plausible, but is likely too low. By contrast,
256× 256 likely adds too many details that a classifier is liable to overfit on. 64× 64 and 128× 128
are probably close to optimal choices.

The other strong tool we have to cope with the paucity of training data is image augmentation. As
mentioned earlier, we use a variety of typical perturbations to the images that will encourage our
models to generalize better. In general, perturbations such as zoom level and brightness are generally
things we want our classifiers to ignore, so by feeding models with many augmented images, we may
train them to not weigh these features heavily in class predictions.

2 Plan Overview
Since convolutional neural networks are well known to perform well for image classification and
I’ve had experience with them, I decided to apply them to this project. I’ve found Keras to be the
easiest library to use, while offering sufficient flexibility for projects of this scope, and so I committed
early to Keras. The main plan was to train Keras CNNs and grid-search a reasonable hyperparamter
space to narrow down what works best for this dataset and metric. Importantly, while there are about
4.5 times fewer covid training images than there are for each of the other classes, the test scoring
metric weighs covid 5 times higher. To compensate for this, I used Keras class weights during model
fitting to adjust the loss function appropriately. I then split the training data into 85% train and 15%
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validation and tracked the weighted class accuracy metric while training. Training with the
final metric of interest was a large part of my success because it allowed me to realistically evaluate
models without having to dip into the test data. In addition, the use of early stopping allowed me to
save weights during training that performed best on the test metric.

3 Training
To start, I decided to work with 64× 64 pixel images for quicker results over a large grid of hyperpa-
rameters. To keep things simple, I used the same number of filters in each Conv2D layer. Across all
experiments, I also used max pooling and dropout.

Training Experiment 1
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Figure 3: The effect of numbers of filters, layers, strides and learning rate on training for 64 x 64
image size. Accuracy weighted so that covid weighs 5 times more than the other classes. Training
took place over 100 epochs and the batch size was 32. Yellow bars are best scores from a 7 epoch
moving average, sienna bars are max scores across all epochs.

In figure 3 we can see that no single hyperparameter makes or breaks training performance. Across
all learning rates, layers, filters and strides we see some of the lowest performance and some of the
best performance, depending on the combination. The clear winner out of the bunch was the simplest
of models: 3 Conv2D layers with 15 filters each, a single stride length and a standard learning rate of
0.001. This result makes intuitive sense; with such a paucity of training data, the stronger models
introduce too much variance and cannot generalize as well. So from these observations, I continued
by exploring the effects of other hyperparamters, edging on the side of simpler models all around.
Never again would I try to throw 80 filters into each layer.
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Training Experiment 2
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Figure 4: The effect of kernel size and image resolution on training. The lighter, lower mark, in each
bar was best out of a 7 epoch moving average, the higher mark is best out of all epochs. The accuracy
score is, as in figure 3, the weighted average we’re also using in the Kaggle test. Learning rate was
0.0001 across tests.

Unfortunately, no image resolution will significantly boost performance above what we saw in figure
3 for 64× 64 images. As expected, going to an image size of 256× 256 does not seem to add much
relevant detail that helps to classify images, and the high dimensions cause overfitting. On the other
end, going all the way down to 64× 64 may in fact start to blur some distinguishing features of the
images. 128× 128 seems to be the right middle ground, but we’ll further probe this. As an additional
benefit to using smaller resolutions, training is sped up significantly. Even at 256× 256 training is
quite slow, and much worse at 512× 512. We can also see in figure 4 that the larger kernel sizes may
be beneficial. We will continue by exploring more the effect of kernel size, filters, image size and
now also optimizer. Perhaps with larger kernels and more filters per layer, 256× 256 resolution could
still have a shot at working well.
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Training Experiment 3
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Figure 5: Experimentation with different optimizers, kernel size, image size and filters. The lighter
lower mark in each bar was best out of a 7 epoch moving average, the higher mark is best out of all
epochs. The accuracy score is, as in figure 3, the weighted average we’re also using in the Kaggle test.
Learning rate was 0.0001 across tests.

For the training with results shown in figure 5, we started with the kernel size shown in the top
Conv2D layer and then gradually reduced kernel size down to 3. Unfortunately, more exploration
of hyperparamters doesn’t seem to significantly benefit performance. Earlier we used the Adam
optimizer across experiments, now trying RMSProp in addition makes little difference. The results
are also little changed by number of filters per layer. However, at this point it’s fairly clear that an
image size of 128× 128 is near optimal, so we’ll stick with this.
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Model Training Progress
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Figure 6: Final model training with 4 Conv2D layers, with 10 filters in each, kernel sizes 9,7,5,5 and
128× 128 image resolution.

From grid searching hyperparamters, we learned that our choice does not have a huge impact on
performance. Still, it became clear that a resolution of 128× 128 is near optimal, higher kernel sizes
can be helpful in the top layers, and we don’t need an excessive amount of layers or filters, likely
because we don’t have enough data to support a model with too many parameters. We can already see
above that training accuracy is substantially better than validation, so we can confirm that overfitting
is a strong threat here.

In figure 6 we plot the training of our final model over 200 epochs with a learning rate of 0.0001.
Again, our accuracy plot is really weighted just as the final test performance is on Kaggle so we can
see real time results as the model trains. Performance on the training set continues to improve, but
validation weighted accuracy levels off around 150 epochs. We did try other sessions with more
epochs to no benefit. Interestingly, the validation scores are not stable; the model wavers quite a bit
during training. Because of this, it was a great benefit to be able to use a callback in Keras to bring
back the model weights from the highest validation score to finally submit predictions from.
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4 Model Interpretability

Model Prediction Probabilities
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Figure 7: Histogram of model confidence

For the histogram above, for each test image we’ve asked the final model for the probability of each
class. Most strikingly, all model probabilities are really close to 25%. That is to say, the model is very
shy to claim it knows the class of any image much better than a random guess. For none of the images
could the model even rule out a single class with confidence! Yet, when we color the confidences
by class as in figure 7, we can see some of the model’s proclivities. In particular, the model does
generally assign high confidences to covid. This makes sense; the test metric weighs covid accuracy
5 times higher than anything else, even equalizing for class imbalance in quantity. To the extent that
viral and normal overlap with the covid histogram, we can see how frequently the model would
predict one of these classes over covid. It appears that more than 50% of images are predicted as
covid. Because the bacterial histogram is completely below 25%, to the resolution visible in our
bin size, the model never predicts this class, which leaves room for improvement since we expect this
class to be as common as normal and viral.

The fact that our model tends to bias predictions towards covid-19 can certainly cause problems in
the clinical setting if not properly understood. Clinicians would need to understand that in addition to
artificially weighing covid predictions 5 times heavier, our model also compensates for their being far
fewer covid cases in the training data. This is to the detriment of overall accuracy. In fact, patients in
the real world do generally have a very low prior probability of having covid-19, so clinicians would
need to understand how to apply Bayes rule to fully understand patients’ posteriors after weighing all
appropriate evidence. It’s an unfortunate fact that when questioned, most doctors do not understand
Bayes rule and often have the wrong intuition about how evidence from scans and models affects
patients’ likelihood of having certain diseases.

4.1 What does covid look like?
Although neural networks are notoriously difficult to interpret, we can have a look at which images the
model is most confident are not covid and the images the model is most confident are covid. In this
way, we can get a sense of what features the CNN picked up on to make reasonable predictions.
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Images the model is least confident are covid

Figure 8: The images are mostly bright and relatively normal looking.

Images the model is most confident are covid

Figure 9: The images are much darker with large black patches.

Although our model’s covid predictions’ probabilities fell within a tight range between about 25% and
28%, the images it assigned near 25% confidence of covid make for a striking juxtaposition with the
images that were assigned near 28%. We can see that the images the model predicts covid for tend to
have large black patches, whereas the images that are predicted as the other classes largely do not. This
gives us a pretty strong sense of what the model is actually focusing on to make predictions.

It’s reasonable to assume that covid-19 may cause dark areas in the lungs in x-rays. It’s likely that
the virus causes fluid to build up, which could be the cause of the darkness we see. Because our
model can pick up on these dark areas in the lungs, it could be useful to a clinician. For example, a
doctor could use our model to warn patients with dark lung spots that they have higher than usual
probability of covid-19, in the absence of more concrete testing availability. Models such as ours may
also be useful in warning patients about increased risk while they await test results. The immediacy
of x-ray results could be especially important since covid-19 often spreads while patients await slow
test results. X-ray machines are becoming smaller and more available; in the future we can hope that
virtually everyone in the world has access to x-ray imaging in their homes, at which point machine
learning models will be particularly useful in extracting information from the myriad images taken
everyday.
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5 Conclusion
5.1 Lessons Learned
Having had significant experience with Keras and image classification in the past, I did not run into
any hard to pin down bugs. I was, however, a bit over eager to start getting results. Consequently, I
spent less time in the beginning looking at the data than I should have. For example, I started out
training models with the image resolution at 512 × 512, whereas my plot of different resolutions
in this report makes clear that this amount of detail is far more than needed to distinguish whatever
features covid likely manifests, such as darkened lungs. Generally speaking, I find that I do get useful
insight from very clean, organized, and systematic plots, such as my plot of images by class in the
very beginning of this report. Yet, I often wait until towards the end of a project to make things more
presentable. I also spent significant time training models with somewhat random hyperparameters
before systematically grid searching and automating the process such that I could train many models
and save them in an organized way with just a click. I also learned that while grid searching parameters,
it makes more sense to use a higher learning rate and fewer epochs and to be very targeted about what
hyperparameters to try, since run times can exponentially blow up over the space of parameters.

5.2 Final Thoughts
The final model predictions submitted to Kaggle scored about 77.5% on the competition’s weighted
accuracy metric. Considering a baseline model that always predicts the covid class scores about
26%, this is reasonable performance. The success of the model rests on good data preprocessing and
augmentation techniques, a weighted loss function aligned to the final metric, grid-search to optimize
hyperparameters and the power of CNNs to classify images. Albeit, image augmentation can only
help to expand our training data by so much, and with such a low ratio of observations to features,
neural networks struggle to make impressively confident and accurate predictions.
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