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1 Introduction

1.1 Problem Statement

Our task is to develop computational methods to experimentally discover the nature of a mystery mutagen.

Mutations are composed of 1 or more rules, each defined by a pattern and action pair. The pattern indicates

where in the genome the rule can take effect and the action defines the change to the original genome. To

understand the syntax of rules, consider a concrete example: ac;t → tg. This particular rule could act

anywhere in the genome where there is an a or c followed by t; the action is to replace that strand of two

bases with t followed by g. Adding expression to the language, this rule could also be written as ac;t → 1g,

indicating that the first component of the action is index 1 of the pattern. 1 We uncover hidden mutagens

by interacting with a simulator: given an experimental genome of length 1,000 that we design, the simulator

will attempt to randomly apply m mutations and return the mutated genome. We then may guess a set of

rules, which will be rejected if not perfectly correct2. The process repeats for some predetermined number of

experiments or time. The simulator does not encourage us if our guesses are close, and this lack of guidance

is only the beginning of the challenges we face.

1.2 Challenges

The core challenge is the extent of ambiguity embedded into the problem. For instance, consider even a

single strand of genome and the result after a single mutation rule applied:

In the absence of more evidence, it is impossible to definitively recover the rule that applied above for 3

reasons, which we now take some time to explore:

1. Ambiguity of context location: constrained to rules with pattern and action windows of length 5,

we would know precisely where this rule applied; rules cannot apply to windows smaller than those

of the action by definition3. However, rules can apply to windows bigger than those of the action.

Above a rule of length 6 could have applied, starting one to the left of the action effect. Then the true

pattern trigger would not have just been cgtat but tcgtat. Alternatively the true pattern could have

been cgtatg. In general, a rule of size w could have applied at w − 5 + 1 different locations. Simply

put, seeing the change is not enough to know the full pattern that was the trigger because rules don’t

necessarly change each pattern base.

2. Ambiguity of pattern disjunction: Knowing where the rule was applied tells us a pattern that

matched the rule’s left-hand side; however, rules with disjunctions will match more than 1 pattern

instance. For example, ignore ambiguity of location by optimistically assuming that the rule above

was only of length 5: there are still 8 possible sets that could match each index of the rule’s pattern.

To enumerate, {c}, {ac}, {cg}, {ct}, {acg}, {act}, {cgt} and {acgt} are all valid sets for pattern index

0 because they all match ”c”. Thus, we are still left with 85 = 32, 768 possible patterns! For rules of

length 10, we have 810 = 1, 073, 741, 824 possible patterns, even if we could observe with certainty one

1For more about rule technicalities, see: http://www.cs.columbia.edu/∼kar/4444f19/node19.html
2This changed midway project to allow an equivalent set of rules, even if they yield a different distribution of changes seen.
3The window of an action is the larger of either the number of indices or one more than the highest number used.
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complete pattern to genome match. Since our uncertainty is proportional to both ambiguity of location

and ambiguity of disjunction, we are saddled with on the order of 10 billion candidate patterns that

can explain the evidence above.

3. Ambiguity of action: suppose we have an oracle that reveals the location and pattern of the single

rule above. Because the action can consist of letters or numbers, we are still unable to confidently guess

the rule. For example, we see above that “a” changed to “t”, so we may be tempted to claim that

the action index that dictated that change was simply “t”. Unfortunately, we must also consider that

there would be at least two possible numbers in that action index that would have had the same effect,

since we observe at least two “t’s” in the pattern. For a randomly generated experiment, an action

window size of w would have about w
4 possible symbols for each index. Thus, for a single rule with

a window size of 10 applied to the above, we must take the 10 billion possible patterns and multiply

by the roughly 310 = 59, 049 possible actions, resulting in about (1010)(104) = 100, 000, 000, 000, 000

possible single rule mutations.

Figure 1: Explosion of candidate rules as a function of window size, assuming we have the single piece of

evidence as above and are searching to explain it with a single rule. Number of possible rules blows up

exponentially as a function of window size.

This daunting level of ambiguity is only compounded by the fact that the number of rules is also unknown;

furthermore, mutations can overlap to muddy the evidence. Perhaps this mutation could have resulted

from in fact two separate rules, applied adjacently. Ultimately, the challenge of this project is to develop

strategies for collecting and integrating many such pieces of evidence to successively update and refine our

beliefs, effectively winnowing down the set of mystery rules that could be at play.

1.3 Solution Summary

Our strategy is to break the problem down into sub-problems, and integrate the sub-problems with sound

mathematical reasoning and intuition. To start at the highest level, it is natural to first develop a strong

single rule guesser and later generalize to multiple rule mutations.

1.3.1 Single Rule Guesser

For single rule guessing, there are a number of useful mathematical tools that we use to quickly narrow down

the rules that best explain the evidence collected:
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• We can make a number of independence assumptions about the elements of the pattern and action

that form a rule. For example, just knowing that some index in the pattern is ”c” tells us nothing

about the rest of the rule. This allows us to break down the probability of a candidate rule as the

product of probabilities of its components. More important, we can build rules to guess from the most

likely pattern and action components.

• As illustrated above, the reality of disjunctions in rule patterns greatly confounds the search for the

true pattern. However, we will later demonstrate that simpler rules (with less disjunction) that can

explain the evidence are far more likely. Furthermore, given multiple mutation examples from a single

rule with disjunctions, incorrect patterns lacking the disjunctions can be definitively ruled out very

quickly.

• We have many experiments to observe, each of which may have multiple mutations that provide valuable

evidence. Because in the single rule case the true mutagen must fully explain each piece of evidence,

the probability of incorrect mutagens can be made to exponentially fall off or else drop to zero. This

is because the probability of a rule effectively becomes the product of probabilities derived from each

piece of evidence.

In addition to narrowing our initial search to a single rule, we can further break down the problem by

assuming we know the window size of the rule and incrementing that assumption when we have good reason

to do so. Following the logic of our program for the smallest window size will be instructive to see the last

principle we use to break down the problem. For a window size of 1, we do the following:

1. Initialize our distribution of belief about P0 and A0 with reasonable priors.

2. Process an incoming experiment by separating it into before and after pairs for single

letter changes, referred to here as evidence.

3. Update our belief about the distributions for P0 and A0 by multiplying current candidate

p0 and a0 probabilities by the probability that they explain each new piece of evidence.

4. Guess a rule composed of the highest product probability P0 and A0 that we have not

already guessed.

5. Iterate with more experiments or guesses.

When the window size expands beyond 1, to take advantage of our independence assumptions about each

Pi and Ai, we maintain a distribution that stores our current belief state about each such rule element. It’s

this way of breaking down the problem that is really the core to our whole strategy. We avoid enumerating

all possible rules that can explain the evidence because there are far too many rules to consider for large

window sizes; instead, we track probabilities for candidate pattern and action elements for each index.

Figure 2: Each window, outlined in blue, red and green, is a possible context for a length 7 rule given this

piece of mutated DNA. Although only 1 of these windows reflects reality, we don’t know which, so we average

over them.

For concreteness, let’s assume we are currently searching for a single rule of length 7 and we see the change

figured above. We process this change by retrieving 3 pairs of original and mutated strings corresponding to

6



the rectangular length 7 windows above. Since we don’t know which of these windows is the right context,

we update our state of belief regarding each Pi and Ai element by the average of how well candidates explain

these windows. Again, we continue by iterating through many such observations of changes, effectively

increasing the probability of the elements that make up the true rule. We continue guessing by building

current most probable rules from current most probable pattern and action elements.

1.3.2 Multiple Rule Guesser

Finally, to leverage our single rule guesser to build a player capable of guessing multiple rules, we seek to split

the observed mutations into as many sets as we assume there are rules. We then assume that a single rule

can explain all the mutations in set 1, another rule can explain set 2 and so on. Our problem now reduces

to finding a reasonable way to choose the splits, which is not trivial since with m mutations and r rules we

have mr possible splits. Although we will later highlight more sophisticated ideas, we settled on a simple

approach. We first take all evidence to be in set 1 until we build high confidence in rule 1. If rejected by the

simulator, we engage the multi-rule hypothesis and keep rule 1 as a permanent member of our guessing set

while moving onto building confidence in rule 2. Critically, while narrowing the possibilities for rule 2, we

reject any evidence that is explained particularly well by rule 1. Iterating the process, we can in principle

attempt to guess any number of rules.

2 Problem Formalization

Let r be one particular rule of a mutagen, then r can be represented as

r = p0; p1; p2; p3; p4; p5; p6; p7; p8; p9@a0a1a2a3a4a5a6a7a8a9, (1)

where each pi ∈ {a, c, g, t}∗ and ai ∈ {a, c, g, t, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let R represent a random variable that takes rules as values. Similarly, let Pi and Ai be variables representing,

respectively, individual elements of the pattern and action part of the rule. For simplicity let P = {Pi},
A = {Ai} for i = 0, . . . , 9. Lowercase letters pi, ai, p, a represent a particular pattern element, action element,

a whole pattern and a whole action, respectively.

Consider a string S = {si}i=0,...,9, si ∈ {a, c, g, t}. If every si matches the corresponding pattern position

pi, the rule’s action can be applied. Let Mi, i = 0, . . . , 9 be indicator variables of these individual matches.

Moreover, let M be an indicator for the event ∀iMi = 1, so that M = 1 if the string matches the pattern P

and 0 otherwise.

It follow that, if M = 1, the original string S can be mutated into a string T = {ti}i=0,...,9, ti ∈ {a, c, g, t}
based on the rule’s action A. If M = 0, then T = S.

Finally, let N be an indicator variable such that N = 1 if R is minimal and N = 0 otherwise.

Based on the process described above, the causal process by which S is transformed into T , can be represented

with the graph depicted in Figure 3.

This is not only a curious picture, but it encodes important constraints of the process that are greatly helpful

in solving the problem at hand, as we will see in the next section. Formally speaking, this is causal diagram

can be though of as a Bayesian Network, and conditional independencies among variables can be read using

the d-separation criterion [Koller and Friedman, 2009, Pearl, 2000].
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Figure 3: Graphical model representing the causal process by which a mutagen rule transforms a string S

into a string T . Each box in the graph is repeated for i = 0, . . . , 9, and arrows crossing boxes’ boundaries

should be considered as being from/to each variable with subscript i.

Our goal is to guess what the unknown rule R is based on what is known, that is, a string S that has been

mutated by the rule into a string T , provided that S matched (M0,...,9, M = 1) the pattern of the same rule

for the mutation to take place.

As framed in the previous section a rule R is composed of a pattern P and an action description A. Next,

we assume that the best guess for a rule is one with the maximum likelihood based on the evidence, that is,

the rule R = {P,A} that maximizes P (P,A | S, T,M0,...,9 = 1,M = 1), which the probability of R being the

rule in play given that we observe the strings S, T knowing that S was matched to P .

Formally, our guess r̂ is defined as

r̂ = arg max
r={p,a}

P (P = p,A = a | S = s, T = t,M0,...,9,M = 1). (2)

In order to find r̂, we will use some of the independencies among variables entailed by the mutation process:

(I1) (Pi ⊥⊥ Aj | S, T,M0,...,9,M), i, j ∈ {0, . . . , 9}: The pattern and action elements are independent when

the original string S and the mutated string T are known together with the fact that there was a match

(M0,...,9 = 1,M = 1).

(I2) (Pi ⊥⊥ Pj | S, T,M0,...,9,M), i, j ∈ {0, . . . , 9}, i 6= j: each element of the pattern is independent of one

another when we know they have been matched (individually) and globally, and S, T are fixed.

(I3) (Ai ⊥⊥ Aj | S, T,M0,...,9,M), i, j ∈ {0, . . . , 9}, i 6= j: action elements are independent of one another

when S and T are fixed and we know the rule was matched to S.

(I4) (Pi ⊥⊥ T, Sj ,M,Mj | Si,Mi), i, j ∈ {0, . . . , 9}, i 6= j: each Pi is independent of the mutated string T ,

any element of the original string S that is not Si and the fact that the pattern was globally matched

(Mj = 1,M = 1) if it is known what Si is and that this particular Pi was matched with Si (Mi = 1).

(I5) (Ai⊥⊥Tj ,M0,...,9 | S, Ti,M), i, j ∈ {0, . . . , 9}, i 6= j: action element Ai is independent of any part of the

mutated string T that is not Ti and the fact that individual parts of S matched P , once it is known

that the whole string was matched (M = 1), and the original string and Ti are known.

Those constraints allows to rewrite the probability distribution on the right-hand-side of (2)
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P (P,A|S, T,M0,...,9=1,M=1) (3)

= P (P |S, T,M0,...,9=1,M=1)P (A|S, T,M0,...,9=1,M=1) (4)

=

(∏
i

P (Pi|S, T,M0,...,9=1,M=1)

)(∏
i

P (Ai|S, T,M0,...,9=1,M=1)

)
(5)

=

(∏
i

P (Pi|Si,Mi=1)

)(∏
i

P (Ai|S, Ti,M=1)

)
. (6)

Equation (6) implies that r̂ as defined in (2) is equal to

r̂ = {p̂, â}, (7)

p̂ = {p̂i}i=0,...,9, (8)

â = {âi}i=0,...,9, (9)

p̂i = arg max
pi

P (Pi|Si,Mi=1), and (10)

âi = arg max
ai

P (Ai|S, Ti,M=1); (11)

which follows from the fact that a product can be optimized by optimizing each one of its independent

factors.

Having the ability to find r̂ by means of finding individual optimal P̂i and Âi overcomes a great deal of

combinatorial considerations.

2.1 Taking a Bayesian Approach

Consider the definition of p̂i, we have that

P (Pi|Si,Mi=1) =
P (Pi, Si,Mi=1)

P (Si,Mi=1)
(12)

=
P (Mi=1 | Pi, Si)P (Si | Pi)P (Pi)∑
pi
P (Mi=1 | Pi, Si)P (Si | Pi)P (Pi)

(13)

=
P (Mi=1 | Pi, Si)P (Si)P (Pi)∑
pi
P (Mi=1 | Pi, Si)P (Si)P (Pi)

(14)

=
P (Mi=1|Si, Pi)P (Pi)∑
pi
P (Mi= 1|Si, Pi)P (Pi)

. (15)

Now, for âi, it follows

P (Ai|S, Ti,M=1) =
P (Ai, S, Ti,M=1)

P (S, Ti,M=1)
(16)

=
P (Ti | S,M=1, Ai)P (S,M=1 | Ai)P (Ai)∑
ai
P (Ti | S,M=1, Ai)P (S,M=1 | Ai)P (Ai)

(17)

=
P (Ti | S,M=1, Ai)P (S,M=1)P (Ai)∑
ai
P (Ti | S,M=1, Ai)P (S,M=1)P (Ai)

(18)

=
P (Ti | S,M=1, Ai)P (Ai)∑
ai
P (Ti | S,M=1, Ai)P (Ai)

. (19)
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2.2 Application of Theory to Inferring the Components of a Single Rule

Let’s now turn to further simplifying our equations for P (Pi|Si,Mi=1) and P (Ai|S, Ti,M=1).

2.2.1 P (Pi|Si,Mi=1)

Note that the term P (Mi=1|Si, Pi) in equation (15) is deterministic according to the problem statement:

the probability that Pi will match Si is 1 so long as Si ∈ Pi and 0 otherwise. Now let’s also temporarily

assume that any particular pattern element pi that matches Si is equally likely and there are npi possible

matching elements. In the case that Pi matches Si, equation (15) becomes:

P (Pi|Si,Mi=1) =
P (Mi=1|Si, Pi)P (Pi)∑
pi
P (Mi= 1|Si, Pi)P (Pi)

=
1

npi
=

1

8

And if Pi does not match Si the above probability is 0. For example, say Si = a and Pi = {c, g, t}; we do

not have a match and P ({c, g, t} | Si=a,Mi=1) = 0. On the other hand, if Si = a and Pi = {a, c, g, t} we

do have a match and P ({a, c, g, t} | Si=a,Mi=1) = 1
8 since 8 sets in the power set {a, c, g, t} match any

particular Si.

Now, while it may seem reasonable to make the probability of Pi uniform over all the sets that match Si, it

leads to practical problems and counter intuitions. The practical concern is that our algorithm would have

strong motivation to guess acgt for each Pi: every piece of evidence is consistent with the full disjunction set.

To acknowledge the counter intuition, consider the simple case of a single rule a@t. Clearly after observing

this change many times, we should be able to safely rule out acgt@t. To complete the intuition with math,

assume that we know there is a single rule of window size 1 and we make a single observation a→ t from a

random genome. We will compare p(P0 = a|observe a) with p(P0 = acgt|observe a):

p(P0 = a|observe a) ∝ P (observe a|P0 = a)P (P0 = a) = (1)

(
1

4

)
=

1

4

p(P0 = acgt|observe a) ∝ P (observe a|P0 = acgt)P (P0 = a) =

(
1

4

)(
1

4

)
=

1

16

Calculating the same for 2 and 3 letter disjunctions that match the observation a and normalizing we develop

the following prior distribution for the length of the set Pi after a single observation: P (len = 1) = 4
15 ,

P (len = 2) = 6
15 , P (len = 3) = 4

15 , P (len = 1) = 1
15 . In implementation, we tweaked P (Pi|Si,Mi = 1) to

not be 1
8 for all Pi that match Si, but rather to prefer shorter Pi’s and hence our player prefers to guess

rules with fewer disjunctions.

2.2.2 P (Ai|S, Ti,M=1)

Note that P (Ti | S,M=1, Ai) from equation (19) is deterministic; i.e. assuming the action is activated

and we know the original string S there is no question about the fate of Ti. As we did for patterns, let’s

also assume that all actions are equally likely; moreover, let’s assume that the action may be completely

contained to a window of size w ≤ 10. This will help us to apply what we derive to our player, which guesses

conditioned on the current window size its considering. Equation (19) then becomes:
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P (Ai | S, Ti,M=1, w) =
P (Ti | S,M=1, Ai, w)P (Ai)∑
ai
P (Ti | S,M=1, Ai, w)P (Ai)

=
1

1 +
∑w−1

j=0 1(Sj = Ti)

In other words, the probability of any particular action given the evidence is the reciprocal of the total

number of possible actions. An action that is consistent with Ti must either be the letter Ti or use a number

to sub in a matching letter from Si within the window. For a concrete example, suppose the window size

is 3, S = aat and T = aaa. Let’s calculate P (A2 = a) given the evidence. The possible actions to mutate

T2 → a would be ∈ {0, 1, a}, thus P (A2 = a) = 1
3 .

To summarize, let’s recall the context and importance of this discussion: now that we can compute the

probabilities of candidate Pi and Ai rule components from single mutation blocks in an experiment, we can

start to build most probable rules from most probable components. Furthermore, equation (6) tells us that

the probability of a rule is just the product of probabilities of each of its components.

2.3 Bridge to Single Rule Guessing Implementation

So far in discussing how to apply theory to a robust single rule guesser, we have swept aside 2 crucial

implementation details:

1. We have assumed that we have a subsection of experiment genome within some window size ≤ 10 in

which we know a mutation of that same length occurred. In practice we rarely have this guarantee;

instead we must collect before and after sub-strings that we believe were the result of a single mutation

and deal with the ambiguity of location discussed in the intro.

2. Although this project is really about integrating many pieces of evidence to inform our player, we also

have not discussed exactly how to update our Pi and Ai distributions.

In the implementation section, we start by addressing these details before moving onto the broader mechanics

of our player.

3 Implementation

3.1 Extracting Evidence from Experiments

We are given how many mutations the simulator was able to successfully perform, but as discussed, there

is still ambiguity of context, i.e. we do not know precisely where these mutations happened. In this section

we will discuss how we dealt with ambiguity of context while gathering evidence. Again, assume we are

searching for the effects of a rule with a known window size 4 (our player iterates through possible window

size assumptions).

One of our concerns when collecting evidence when m, the number of mutations, is large is the possibility

of composition of mutations, referred to as overlapping mutations. If a rule with window size w operates on

a single 1,000 length genome twice, the probability of non-overlapping mutations is roughly 1000−2w
1000 . This

4Recall that we define the window size of a rule to be the minimum length genome string the rule needs to fully express

itself, which will be the minimum of either the pattern length, action length or number used in the action + 1.

11



is a consequence of the fact that there are roughly 2w places in the genome where the second mutation

could start and overlap the first. In general, for m mutations the probability of no overlap is on the order of∏n=m
n=1

1000−2w(n−1)
1000 .

Figure 4: Overlap of mutations in a single experiment becomes likely as m approaches 20.

As we can see, unless the window size is very small, mutation overlap becomes plausible when m ≥ 5 in a

single experiment. For dozens of experiments, mutation overlap becomes almost certain. Considering that

the probability we assign to any rule is proportional to the probability that it explains each block of evidence,

deceiving evidence may suddenly misguide us to infer the true rule is impossible!

Let’s now assume that we are considering rules with a window size of 7 and contrast deceiving evidence with

clear and constructive evidence:

Figure 5: This is evidence we would reject because there is risk of overlapping mutations.

Because the changes in this block span 13 characters of genome, we can be certain that no single length 7

mutation was the cause. Although we can not be sure that there was in fact overlap, we have reason to fear

it. The ambiguity of context for the left most mutation includes that of the right most. By contrast, if the

span length of change had been 14 characters, the location of a supposed two mutations crystallizes with

certainty. In practice we prefer to accept evidence from blocks of changes that are separated by at least 1

window length of non-mutated string.

Figure 6: This is evidence we would take into account because overlapping mutations are unlikely.

While even here lurks the possibility of overlapping mutations, it is far less likely. Thus we would process

this block of string into before and after pairs as follows:

Since we have no way of knowing in which of these windows the proposed length 7 rule actually applied, we

accept the before and after strings from each window or possible “world” as evidence. To process the Pi and

Ai distributions for these worlds, we use the equations described in the theory section and average over the
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Figure 7: Processing a block of evidence into separate ”worlds”

worlds. The idea is that probable Pi and Ai components will at least explain 1 of the worlds well, whereas

improbable Pi and Ai components may not explain even a single world. Over many such pieces of evidence

our player homes in on the truth.

3.2 Accounting for Plurality of Evidence: The Running Distribution

As discussed, the crux of this entire problem is to effectively leverage a plurality of evidence to conquer the

ambiguity posed by any single piece of evidence. Fortunately we have a final independence assumption that

clarifies how to update a running distribution of Pi and Ai candidates: mutations are independent events.

Albeit there is still a small possibility of overlapping mutations and the history of mutations will affect

our experiment design, this assumption is roughly correct and highly effective. Consequently to update

our running distribution with each new block of valid evidence, we multiply the probabilities of our Pi and

Ai candidates by the probability that they were components of the rule 5 that caused the change observed.

Importantly, the Pi and Ai running distributions also get re-normalized to enforce that our distributions sum

to 1.0. Because of re-normalization, even though Pi and Ai elements successively get multiplied by numbers

∈ {0, 1}, their probabilities can increase as other candidates dwindle in probability or die out completely. In

many cases candidate Pi and Ai’s can even have probabilities of 1.0 if no viable alternatives exist. Because

the probabilities of candidate rules are just the product of their component probabilities, our belief about

rules is implicitly updated just like the Pi and Ai probabilities: the probability of rules also turns out to

be proportional to how well they explain each block of evidence we accept. However, recall that we do not

need to explicitly keep a list of all possible rules and their probabilities; rather, we can build rules and assign

them probabilities whenever we need to. As a minor implementation note, we work with all probability

calculations in log space to avoid numerical imprecision issues.

3.3 Building Rules from the Running Distribution

Building the current most likely rule reduces to picking the max for each Pi and Ai in our running distribution.

If we want to enumerate many current possible rules, we take a recursive approach.

Let’s consider a concrete case to get a feel for what our distributions might look like, how we will select most

likely rules and how recursive rule building will work. Each tuple in the following is a pair that attaches a

probability to a possible rule index symbol:

P0 =
[
(a, .7), (ac, .2), (ag, .1)

]
P1 =

[
(c, .5), (g, .3), (cgt, .2)

]
P2 =

[
(g, .4), (ct, .3), (t, .3)

]
5At their respective indices
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A0 =
[
(0, .6), (t, .4)

]
A1 =

[
(c, .5), (2, .5)

]
A2 =

[
(1, 1.0)

]
For the most likely rules, we pick the peak or peaks 6 of each distribution. a;c;g@0c1 and a;c;g@021 here

both have a max probability of (.7)(.5)(.4)(.6)(.5)(1) = .042. We can build 3 x 3 x 3 x 2 x 2 x 1 = 108 possible

rules from these distributions. Building these possibilities from left to right, we can start by enumerating

the possible rules up to the 0 index, our base case:

1. a

2. ac

3. ag

To extend this list to all rules up to the 1st index, we append all the possibilities for P1 to what we already

have:

1. a;c

2. a;g

3. a;cgt

4. ac;c

5. ac;g

6. ac;cgt

7. ag;c

8. ag;g

9. ag;cgt

In this way we can always enumerate all possible rules up to index i + 1, given all the rules up to index i.

Since the base case is also always well defined, a recursive function is an effective approach for turning many

possible Pi and Ai candidates into many actual rules we might eventually guess or use to design experiments.

3.4 Extension to Multiple Rule Guessing

Up to now we’ve focused on the sub-problem of single rule mutagens, assuming that we could generalize

later. However, in theory and practice the existence of multiple rule mutagens significantly complicates

matters. While we did successfully guess some multiple rule mutagens in the tournament, we fail for many

cases; furthermore the implementation of multiple rule generalization even interfered with the strength of

our initial single rule guesser. We’ll start by illustrating the challenges, and conclude with two solutions.

6In fact there will often be many rules tied for the most likely.
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3.4.1 Challenges

A single rule with disjunction can behave like multiple rules; therefor, single rules can be difficult to distin-

guish from multiple rules. One clarifying approach is to claim that rules with disjunction are equivalent to

multiple rules without disjunction. For example, it would be convenient to state an equivalence between the

rule sets {ac → g} and {a → g, c → g}. Then we are relieved from the burden of ambiguity of disjunction

outlined as a principle challenge in the intro! However, such a pretense of equivalence is, unfortunately, false.

Consider a genome made entirely of the base “a” to which we apply m mutations. Using the disjunctive

single rule form the above example, we would observe m successful mutations, whereas the two rule form

would only produce on average m
2 mutations. This is a consequence of the fact that the simulator randomly

picks a rule to apply. Now, we cannot claim that a mutagen that strikes only half as often as another behaves

equivalently. Thus it seems wrong to relax the constraints of the project to allow for completely eliminating

disjunction. Rather we thought it more interesting to face the ambiguity of disjunction instead of further

breaking down the entire problem into a matter of building evidence for any number of far more conspicuous

non-disjunctive rules. 7

All of this is to develop the point that it’s hard to know how many rules there even are. Moreover, a manifest

change from rule #2 may befuddle our algorithm if this change is fed as evidence for our rule #1 candidates.

Ultimately, we strive to find a way to split blocks of evidence into as many sets as we have rules so that

we can run our single rule algorithm on the sets separately. Then the challenges reduce to finding the right

split out of rM possibilities, where r is the number of rules and M is the total number of mutations we have

seen. As with rule window size, we can also treat the number of rules as known and increment with time

or good reason. Although r is likely no larger than 3, M could be 15 for each experiment and we may have

hundreds of experiments, so the exponential nature of the possible set assignments defies brute force search.

3.4.2 Greedy Approach

Recall that each time we incorporate a new piece of evidence into the search for a single rule, we update

the distributions that represent our belief about each candidate pattern and action index that could make

up candidate rules. Although in the beginning our distributions will be less stable, over time we should

expect some level of convergence such that more evidence will do little to shake our distributions– unless, of

course, that evidence is contrary to what we have seen because it was produced by a different rule! In such

a manner, we can build intuition for the greedy approach, which is as follows: keep r separate Pi and Ai

distributions for the r rules we assume to exist. To digest each new block of evidence, update copies of of the

r Pi and Ai distributions. Compute which of the r distributions peaks were the least disturbed by the new

evidence and finally commit the evidence to updating that distribution. The approach is greedy because we

decide how to put the M pieces of evidence into r buckets by making step by step locally optimal decisions.

In practice we did not have time to debug this approach, and so we now turn to what we actually did.

3.4.3 Develop Confidence, One Rule at a Time

A simpler approach is to let our single rule guesser run until it develops a threshold level of confidence in a

single rule being a part of the final rule set. If the single rule is still rebuffed by the simulator, we keep that

rule as a member of the final set and move onto guessing another rule. This process can then iterate to make

an attempt at any number of rules. Most importantly, when processing evidence for rules after the first, we

7Of course if we guess a disjunctive rule that was really two rules, the simulator gives us credit, but the point is that we are

willing to consider disjunctive rules as guesses.
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reject any evidence that explains a rule already in our final set. This was the approach that we actually took

to some level of success. One of the drawbacks is that we don’t have a way of neglecting evidence that will

be explained by future rules we may accept into the final set. For example, when considering the first rule,

evidence that was caused by the second rule will still murky the waters.

3.5 Player

3.5.1 Main Loop

At the heart of our player is the following loop:

1. Generate experiment

2. Get mutated genome from simulator

3. Get q, the number of performed mutations from simulator

4. Record mutations

5. Generate best guess

6. Learn from incorrect guesses

Almost all of the complexity of our player is confined to step 4 in the loop, recording mutations. Within

recording mutations the pivotal step is to preprocess the evidence and update our belief state, to which we

now turn.

3.5.2 Preprocessing Evidence and Updating Beliefs

The first question we ask while digesting incoming evidence– and immediately before updating our beliefs –is

whether or not our player has a large enough assumed window size. As discussed, our player keeps a global

window size that dictates one of the key assumptions about the mutation. As we break the evidence into

valid blocks, as discussed in section 3.1, we are in a position to determine whether our current window size

is adequate. We do this by comparing the number of evidence blocks extracted with the number of known

mutations the simulator applied. Since each block should correspond to 1 actual mutation application, too

many blocks indicates that the current window size is too narrow. In those cases, we must have broke a

single applied mutation into 2 or more separate blocks of evidence; thus, it is here that we increment our

considered window size to match the current full genome evidence.

As a final processing step, we apply two filters to the full evidence genome: one to filter out changed blocks

that may have overlapping mutations and another to eliminate blocks that we’re already fairly certain are

explained by other rules we intend to guess (if we will guess multiple rules).

Updating our beliefs is then a matter of multiplying the new Pi and Ai distributions with their prior

distributions, which is delegated to classes outside that of the main player since it’s an involved calculation.
8

8See section 2.
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3.6 Additional Details

Note that the domain of each element of the patter Pi is the power set of {a, c, g, t} minus the empty set.

We can efficiently represent those 15 elements using a 4-bit string. For instance, ‘at’ would be 1001 (making

the bit significance order follow the alphabetical order of the bases).

4 Designing Better Experiments

One of the challenges for our approach to guessing the rules (mutagen) is to distinguish between multiple

possible rules with equal or close probabilities. Some reasons may be that the rules with equal probability

may be very similar to each other, or we may not have enough evidence from the random test strings to

make their probabilities diverge, or out of pure coincidence. In order to better distinguish between such

rules, we can design experiments, i.e. design the test strings.

4.1 Design Experiments For the Single-Rule Case

For the multiple candidate rules with equal (or similar) probabilities, at most one of them can be the actual

rule. Thus, we can construct a string that specifically contains the sub-strings that match the patterns in

the candidate rules. In the following analysis, for simplicity let’s assume there are only two candidate rules.

Case 1: One of the candidate rules is the actual rule

In this case, after we construct the test string, it should contain both the sub-strings that match the pattern

in the correct candidate rule and the sub-strings that match the pattern in the incorrect candidate rule. After

the mutation, we should be able to see evidence supporting the correct candidate rule, as the sub-strings

matching the pattern in the correct candidate rules get mutated as expected. In addition the probability for

that rule should increase. On the other hand, the sub-strings matching the pattern in the incorrect candidate

do not get mutated as expected, thus the probability for the incorrect candidate rule should decrease.

Case 2: Both candidate rules are incorrect

In this case, after we construct the test string, it should contain the sub-strings that match the pattern in

either of the two incorrect candidate rules. After the mutation, we would not see evidence supporting these

two candidate rules, and the probabilities for them should decrease. On the other hand, we may see evidence

supporting other (potentially correct) candidate rules, and their probabilities would increase as a result.

It should be noted that in case 1, some sub-strings that match the pattern in one candidate rule may also

match the pattern in the other candidate rule. If the actions in the two rules are different, then we are

still able to distinguish between the two rules since these sub-strings are expected to mutate according to

the correct candidate rule. On the other hand, if the actions in the two rules are the same, then we may

be unable to distinguish between the two rules based only on these sub-strings. However, as the matching

patterns in the two rules are not identical (otherwise the two rules would be equivalent to each other), we

should expect to see some sub-strings elsewhere in the test string that match only the pattern in one of the

two rules. We can distinguish between the two rules based on those sub-strings instead.
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4.2 Design Experiments For the Multiple-Rule Case

The general methods for designing experiments under the single-rule case can also be extended to the

multiple-rule case. Assuming we know there are n rules, we can divide the test string into n parts of equal

length, each part testing the candidates for one rule. The way to construct each part of the test string is the

same as the way to construct the whole test string under the single-rule case. In other words, part i of the

test string should contain the sub-strings that match the patterns in the candidate rules for rule i.

4.3 Implementation

For the single-rule case, we design the test string using the following method (the test string begins as an

empty string):

1. Pick a random candidate rule from the set of rules with the highest probability.

2. Add a random string that matches the pattern in this candidate rule, with the length

equal to the window size of the rule.

3. Add a random string with the length equal to 10 or two times the window size of the

previous candidate rule, whichever is larger. This random string does not have to

match any specific pattern.

4. Pick a random candidate rule from the set of rules with the second highest probability.

5. Repeat step 2 for this new candidate rule.

6. Repeat step 3 for this new candidate rule.

7. Repeat all previous steps until the test string has length at least 1000, or another

pre-determined value. At this point, if the length of the test string is larger than

1000, then the first 1000 characters of the test string is returned. Otherwise, add

random characters to the end of the test string until the length reaches 1000.

As an example, suppose the set of rules with the highest probability contains rules “a;a;ac@cat” and

“a;c;c@cat” while the set of rules with the second highest probability contains rule “c;a;t@0cc”. Then

the test string may begin as “aaa cactgaatgc cat ttagcgtgga acc gagctacaat cat ctcatagcga aac ...” (spaces

added for clarity).

Ideally the test string should contain many (depending on the window sizes) sub-strings that match the

patterns in different candidate rules, and the mutation results from this test string should return more

discriminating evidence. The reason for adding random characters between two sub-strings matching the

patterns of candidate rules is to lower the probability of overlapping mutations or a situation where two

mutations occur too close to one another. We strive to avoid such occurrences that create misleading

evidence, as discussed earlier.

The proportion of the test string that is ”designed” according to the aforementioned method can also be

adjusted, as a string consisting of random characters can be useful to discover new mutations and new

candidate rules. Suppose we want only 80% of the test string to be ”designed”, then we can follow the

same method until the length of the test string reaches 800, finally appending 200 random characters.

During actual implementation, however, we set that proportion to be 100%, meaning the entire test string
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is ”designed”, as this leads to a better performance. Nonetheless, we only start designing experiments after

5 initial purely random string experiments. These initial random strings are used to discover mutations and

set the initial probabilities for candidate rules.

Unfortunately, due to limited time, we did not have the opportunity to implement the method for designing

experiments under the multiple rule case. This will be a potential area for future improvement.

5 Analysis of Performance

5.1 Summary of Tournament Results

The results for tournament mutagens with m = 10 and 5 runs are as follows9:

Mutagen Our Result Average Result Groups’ Results

c;acg;t@11g 2 2.875 4-2-2

ac;gt;g@tcc 5 4.875 7-1-0

a;acgt;c;acgt;g@987atc 1 1.375 2-1-5

c;a;t@tag + g@3 1 1.375 2-1-5

c;ct;a;t@0a23g + ac;t;actg;ag;ct@c12t4 0 1.875 3-0-5

c;a;g;t@atata + ac;a;ac;a@0gg 0 3.125 5-0-3

a;g;c@cgt + a@5 0 1.250 2-0-6

ct;ac;t@agt0 + ga;at;t@gattaca 3 1.500 1-3-4

c;a;t;g@tatc + t;a;g@gat 3 4.125 6-1-1

a@t + g@c 0 3.125 5-0-3

c;c@tt + c@t 0 3.750 6-0-2

acg;cgt;agt;act@tacgg + t;a;c;g;g@gtacg 0 0.125 0-1-7

a;ca;g;tc@ct1a + a;c;t;g@gattaca + c;a;t@tac 0 1.625 2-1-5

t;c;a;t;g@atccg + a;t;c;c;g@tcatg + a;t;c@g98 0 0.000 0-0-8

t;c;a;t;g;c@atccgt + a;t;c;c;g;t@tcatgc + a;t;c@gat 0 0.000 0-0-8

Average (by run) 1 2.067

Overall (by mutagen) 1-5-9 45-11-64

In the table above, “our result” denotes the number of runs where we are able to guess the mutagen suc-

cessfully; “average result” denotes the average number of successful runs among all groups on this mutagen;

“groups’ results” denotes the number of groups that can guess this mutagen successfully in all 5 runs, in

some of the 5 runs and in no run.

Overall, out of the 15 tournament mutagens, we are able to guess 6 of them successfully in at least one run.

This figure is higher than that of 3 other groups (Groups 6, 7 and 8) but lower than that of 4 other groups

(Groups 1, 2, 4 and 5). We are only able to guess 1 of them (“ac;gt;g@tcc”) successfully in all 5 runs. This

suggests that our approach may not be robust enough and is subject to randomness in the test mutagens.

9We do not have complete results for m = 5 and m = 15, though based on partial results it appears that the results with

these values of m will probably be very similar to those with m = 10.
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5.2 Analysis of Results Under the Single-Rule Case

There are 3 single-rule mutagens in the tournament, and we are able to guess one of them (“ac;gt;g@tcc”) suc-

cessfully in all 5 runs. For the other two single-rule mutagens (“c;acg;t@11g” and “a;acgt;c;acgt;g@987atc”),

we are able to guess them successfully in at least 1 out of the 5 runs. Together with Groups 1 and 5, we are

among the three groups that are able to guess all three single-rule tournament mutagens in at least one run.

These results suggest that we are relatively good at guessing mutagens with only one rule, even if the rule

has a large window size. We highlight this point in the following charts:

(a) Percent of Single-Rule Mutagens Guessed Correctly

at Least Once

(b) Number of Correct Attempts at Single-Rule Muta-

gens, Out of 15

Figure 8: Summary Visual of Accuracy for Single-Rule Mutagens Across Groups

One aspect that is worth mentioning is that when we guess correctly, we do so fairly efficiently. For the

single-rule mutagens with short rules, we are often able to guess them within 20 experiments and 200 guesses,

and can occasionally even guess in the first experiment within 10 guesses. In addition, even in the situation

where we are unable to guess the mutagen correctly, we may still be able to make a “reasonable” guess with

a Jaccard score that is not close to zero. For the mutagen “c;acg;t@11g”, we guess it successfully in 2 out of

5 runs, but in the other 3 runs, despite that we are not able to guess it correctly, we can still make guesses

with Jaccard scores between 25% and 50%.

With some additional testing, we have found that we are able to guess most single-rule mutagens regardless

of window size, though we are more likely to succeed if the window size is smaller. Also, we have made

some structural changes to our implementation in order to handle mutagens with multiple rules, and during

testing after the tournament, we have found that our previous implementation works better for the single-rule

mutagens.

We have tested both implementations with some single-run mutagens. 5 runs are performed on each mutagen

for each implementation. Some results for our previous implementation are as follows:
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Mutagen Successful Runs Average Experiments Average Guesses

c;acg;t@11g 5 11.4 11.4

ac;gt;g@tcc 5 1.0 1.0

a;acgt;c;acgt;g@987atc 5 9.2 9.2

t;a;g@g1ttaca 5 10.6 10.6

c;a;t@52cg 5 9.2 9.2

ac;acgt;ct@78a 5 62.4 62.4

acgt@9876543210 5 6.8 6.8

a;ac;g;ct@ct1a3 5 5.2 5.2

a;ac;g;ct@ct1a7 5 13.2 13.2

In comparison, some results for our most recent implementation are as follows:

Mutagen Successful Runs Average Experiments Average Guesses

c;acg;t@11g 2 9.5 218.0

ac;gt;g@tcc 5 1.0 1.0

a;acgt;c;acgt;g@987atc 1 42.0 1026.0

t;a;g@g1ttaca 5 5.0 102.6

c;a;t@52cg 0 N/A N/A

ac;acgt;ct@78a 0 N/A N/A

acgt@9876543210 5 4.4 86.8

a;ac;g;ct@ct1a3 5 4.0 79.6

a;ac;g;ct@ct1a7 2 8.0 180.5

In the cases where our guesser cannot guess a mutagen successfully in all 5 runs, the average numbers of

experiments and guesses only take successful runs into account.

It can be seen from these results that compared with our most recent implementation, our previous imple-

mentation is more likely to guess the single-rule mutagens successfully. For the mutagens that both of our

implementations can guess, our most recent implementation generally needs fewer experiments but more

guesses, because in our previous implementation we make only one guess per experiment, whereas in our

most recent implementation we make multiple guesses per experiment.

The first three mutagens listed above are the three single-rule mutagens in the tournament. If our previous

implementation were used in the tournament to attempt these mutagens, we would be one of the three

groups that could guess all single-rule mutagens in all runs (the other two groups are Groups 1 and 5).

Overall, our approach is able to guess single-rule mutagens successfully in most cases. During the structural

changes we might have introduced some bugs that cause our most recent implementation to fail with some

mutagens. Once these bugs are fixed our most recent implementation should be able to guess most single-rule

mutagens as well.

5.3 Analysis of Results Under the Multiple-Rule Case

There are 9 two-rule mutagens in the tournament, of which we can guess 3 successfully in at least one run.

Our chances of success do not seem to correlate with the window sizes of the two rules: we are unable to guess

a mutagen with two rules of window sizes 1 (“a@t + g@c”), yet we are sometimes able to guess mutagens
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with two rules of larger window sizes. We believe this is due to the methods we use to come up with the two

(or more) rules: we sometimes overlook shorter rules in favor of longer rules, and once we commit to rules

to add to our set, we never look back. This greedy approach goes wrong quite often.

There are also 3 three-rule mutagens in the tournament, which we are unable to guess successfully. In general

three-rule mutagens are more difficult than single-rule and two-rule ones, and some three-rule tournament

mutagens are so difficult that they thwart all 8 groups.

For the tournament each of the 8 groups was asked to submit a mildly difficult mutagen. We submitted

a two-rule mutagen (“c;ct;a;t@0a23g + ac;t;actg;ag;ct@c12t4”), and ironically we ourselves are unable to

guess it successfully, while 3 other groups (Groups 1, 2 and 4) are able. The reason for submitting a two-rule

mutagen was because single-rule mutagens tended to be either too easy or too hard for most groups. The

last minute changes we did to our multiple rule guessing implementation left us unable to test enough cases

and make improvements.

Overall, we believe that there is still much to be done to improve our performance at guessing multiple-rule

mutagens.

6 Ideas for Further Improvement

First and foremost we wish to preserve our best single-rule guesser while also generalizing to multiple rules.

This is a matter of debugging the data structures that allow us to generalize, such as lists of belief distributions

for Pi and Ai instead of single distributions. Then to improve our multiple-rule guesser we would implement

the greedy strategy discussed in section 3.4 “Extension to Multiple Rule Guessing”. Taking a greedy strategy,

it would then also be crucial that we gave our player a way of reversing course after mistakes. A simple

reset after some amount of failure is one solution. Another is to reset after all of our candidate rules are too

low in probability to be feasible. Another multiple-rule case behavior that we should correct is our player’s

tendency to guess too many rules. We could, in a probabilistic way, bias our player towards a belief in fewer

rules, or else set a hard limit at 3 (the tournament limit).

Since there are only a small number of possible short rules up to window size 2, we could further improve

our performance on multiple-rule mutagens with such short rules by guessing all possible combinations of

short rules (up to 3 rules) that are consistent with the observations in the first experiment. If none of these

combinations is the actual mutagen, we then move on to guessing mutagens with longer rules.

We could also choose to relax our intentions of handling the ambiguity of disjunction in the case of multiple

rules. Then we could assume all rules will have no disjunction and add rules to our guessing set after

collecting irrefutable evidence. We could obtain such incontrovertible evidence after eliminating disjunction

because of the drastic reduction of ambiguity in evidence.

7 Conclusion

Beginning with a written formalization of the problem and a causal graph 10 granted us a powerful framework.

With such a mathematical structure, we were able to derive a number of independence assumptions about

the component elements of rules.

10See section 2
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In order to manage the complexity of the task, we dissected the problem into sub-problems. To do this we:

1. Created a single-rule guesser that could later be adapted to multiple-rule guessing

2. Derived the probability of rules from the probability of their components

3. Integrated distributions deduced from single blocks of evidence with the entire set of prior evidence

4. Constrained the search space to a fixed window size, and incremented when it was reasonable or

necessary to do so

By translating our probabilistic framework and modular ideas into code, we were able to build a somewhat

consistent and efficient single-rule guesser for the tournament. Moreover, although it wasn’t necessary for

the tournament, we were able to handle rules with disjunction without treating them as multiple rules. This

is an arguably more challenging task that also preserves the full probabilistic behavior of mutagens. We also

managed to generalize to multiple-rule guessing, albeit with limited success. Although we have much room

for improvement, we believe we have laid a strong foundation.

8 Group Member Individual Contributions

All group members have provided general ideas and algorithms for this project. In addition, some particular

contributions from each group member are as follows:

Juan Correa: Probabilistic modeling of the problem, implemented player’s main loop and most likely rule

estimation. Attempted extension to multiple-rule-mutagen guessing.

John Daciuk: Wrote sections 1, 2.2, 2.3, 3 and 7 of the report. Contributed to section 6 and created graphs

for the appendix. Contributed to a handful of helper functions for core player behavior.

Patrick Kwok: Implemented the initial structure of the guesser, implemented the algorithm for designing

experiments, conducted tests and analyzed results. Also wrote the corresponding parts of this report.
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10 Appendix: Additional Rule Visualizations

Let the nodes labeled with numbers represent the sequence across which the mutation happens. The arrows

going into the sequence specify the pattern that must be matched for the mutation to happen. The arrows

leaving the sequence determine what the sequence will become after the mutation.

10.1 Rule: ag; at → gt

a g t

0 1

10.2 Rule: agt → 210

a g t

0 1 2
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10.3 Rule: cg; → c0

c g

0 1

10.4 Rule: a;t → ta

a t

0 1

10.5 Rule: ac; g; t → 01234t

a g tc

0 1 2 3 4 5
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11 Appendix: Simplifying Rules

11.1 Rule: cg;agtc → c1

c g

0 1

First, we may like to write this rule as cg; → c1, where nothing after the semicolon denotes a match with

anything. When a node can match anything, we can say that the mutation has no matching requirement

there.

We could simplify this rule to ”g → c”. Notice that in doing so we would be removing a cycle from the

graph. Generally, if we can remove edges from a graph we will say it’s simpler. Removing cycles often does

not grant an equivalent mutation, but it’s worth considering when we can remove cycles. Also notice that

we remove the ”1” node because the mutation is not required to match there and that node will not mutate.

In other words, it has no incoming or outgoing edges. If the node was not on one of the ends of the sequence

we would leave it as a placeholder. So now the resulting graph becomes:

c g

0

11.2 Rule: c;gt → 0t

c g t

0 1

26



We can eliminate node 0 because it’s dangling all the way to one side with no outgoing edges. Once we’re

left with a single sequence node, we can then eliminate the cycle. We then get the equivalent rule: g → t

g t

0
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